STOMPYMQ

Igor Mandrichenko

Feb 17, 2022

CONTENTS:

1 STOMP Client 1
1.1 Using STOMP Client. o o e e e e e e e e e e e e e e e 1
1.2 STOMPClient object methods 5
1.3 STOMPTransaction object o i ot 7
1.4 STOMPFrame object o it e e e e e e e e e e e e e e e 8
2 Message Broker 9
3 Indices and tables 11
Index 13

CHAPTER
ONE

STOMP CLIENT

STOMPClient is used to connect to and communicate with the message broker. Here is how to create a client object

and connect it to the Broker:

1.1 Using STOMP Client

1.1.1 Connecting to the Broker

import stompy

port = 61613
host = "host.domain.com"
client = stompy.connect((host, port))

1.1.2 connect() function arguments

stompy . connect (addr_list, **args)
Creates the client object and connects it to the Broker

Parameters

e addr_list —a single broker address as tuple (ip_address, port), or a list of tuples - addresses

* login (str) — login id to use, default: None

» passcode (str) — pass code to use, default: None

e headers (dict) — additional headers for the CONNECT frame, default: none

Returns STOMPlient instance connected to the Broker

Return type STOMPClient

STOMPYMQ

1.1.3 Reading messages using iterator

import stompy

port = 61613
host = "host.domain.com"
client = stompy.connect((host, port))

client.subscribe("/queue/Q")
client.subscribe("/topic/T")

for frame in client:
command = frame.Command

headers = frame.headers() # copy of the headers array
source = frame["source"] # headers can be accessed via mapping.
< Iinterface
option = frame.get("option", "none")
destination = frame.destination # convenience, same as frame['destination"]
body_as_bytes = frame.Body
body_as_text = frame.text # decoded with UTF-8
... process frame

iterator stops when the connection closes

1.1.4 Reading messages using recv()

frame = client.recv()

while frame is not None:
... process frame
if ...:
break

frame = client.recv()

1.1.5 Reading messages using callback

def process_message(client, frame):
process message received by the client
if ...:
return frame # non-False return will stop the loop()

last_frame = client.loop(callback = process_message)

The loop method can have zero or more positional arguments. First positional arguments will be the callback. The
remaining positional arguments will be passed as positional arguments to the callback in addition to the client and
the frame. The method accepts 2 optional keyword arguments:

transaction str, transaction ID to associate with all the ACKs and NACKSs sent automatically during the
loop

timeout numeric, time-out used to receive individual frames. In case of time-out, STOMPTimeout ex-
ception will be raised

2 Chapter 1. STOMP Client

STOMPYMQ

Additional keyword arguments can be specified. They will be passed to the callback as is.

For example:

client.loop() # loop until disconnection without calling any.
—callback
def my_callback_1(client, frame): # no additional arguments

if ..

return True
client.loop(my_callback_1) # loop until my_callback_1 returns True

def my_callback_2(client, frame, paraml, param2, param3=None): # 2 positional and 1.
—keyword arguments

if ...:
return True
client.loop(my_callback_2, paraml_value, param2_value, param3="hello")

def my_callback_3(client, frame, paraml, param2, param3=None): # 2 positional and 1.
—~keyword arguments

if ...:
return True
client.loop(my_callback_3, paraml_value, param2_value, transaction="txn", timeout=10.0,.
—param3="hello")

The loop() method will run the client in the loop, receiving frames from the broker, calling the callback, if present.
The loop() will return once the callback (if any) returns something which evaluates to True or the connection closes.
The loop() will return the last value returned by the callback or None if the loop stopped due to the disconnection.

1.1.6 Waiting for a receipt

def wait_for_receipt(_, frame, receipt):
process message received by the client

return frame is not None and frame.Command == "RECEIPT" and frame["receipt-id"] ==.
—receipt
closed = client.loop(wait_for_receipt, receipt="the-receipt"”) == None

1.1.7 Sending ACKs/NACKs

client = stompy.connect(Chost, port))
client.subscribe("/queue/Q", send_acks = False) # disable auto-sending ACKs

for frame in client:
if frame.Command == "MESSAGE" and "ack" in frame:
if ...:
client.ack(frame["ack"])

(continues on next page)

1.1. Using STOMP Client 3

STOMPYMQ

(continued from previous page)

else:
client.nack(frame["ack"])

1.1.8 Sending messages and other frames

client = stompy.connect((host, port))
client.send("SEND",
destination="/queue/Q",

body="Hello there", # can by bytes or str
source=str(os.getpid()) # custom header

)

client.message("/queue/Q", "Hello there", source=str(os.getpid())) # same as above

1.1.9 Sending messages and waiting for receipt

client = stompy.connect((host, port))
my_receipt = client.message("/queue/Q", "Hello there", receipt=True) # will,,
—generate and return receipt-id

def wait_for_receipt(_, frame, receipt):

process message received by the client

return frame is not None and frame.Command == "RECEIPT" and frame["receipt-id"] ==.
—.receipt

if client.loop(wait_for_receipt, receipt=my_receipt):
receipt received

else:
connection closed

1.1.10 Transactions

client = stompy.connect((host, port))

transaction = client.transaction()
trnsaction.message("/queue/Q", "lMessage part #1")
trnsaction.message("/queue/Q", "lMessage part #2")
receipt = transaction.commit(receipt=True)

wait for receipt

if client.loop(wait_for_receipt, receipt=receipt):
receipt received

else:
connection closed

4 Chapter 1. STOMP Client

STOMPYMQ

1.2 STOMPClient object methods

class stompy.STOMPClient
STOMPClient constructor does not have any arguments.

connect (self, addr_list, login=None, passcode=None, headers={}, **kv_headers)
Connects to a broker. On successfull connection, sets the following attributes:

client.BrokerAddress - tuple (ip_address, port) - actual address of the broker the connection was established
to clint.Connected = True

Parameters

¢ addr_list - a single broker address as tuple (ip_address, port), or a list of tuples - ad-
dresses

* login (str) - login id to use, default: None
¢ passcode (str) — pass code to use, default: None
¢ headers (dict) — additional headers for the CONNECT frame, default: none
* kv_headers — additional headers for the CONNECT frame
Returns CONNECTED frame returned by the broker

disconnect()
Send DISCONNECT frame, wait for receipt and close the connection.

__init__O
STOMPClient constructor does not have any arguments.

__iter__QO
The client can be used as an iterator, returning next received frame on every iteration. The iteration stops
when the connection closes:

client = STOMPClient()
client.connect(...)
for frame in client:

connection closed

ack(ack_id, transaction=None)
Send ACK frame

Parameters
e ack_id (str) — NACK id to send
e transaction (str or None) - transaction id to associate the ACK with, default: None

loop (*params, transaction=None, timeout=None, **callback_args)
The method can have zero or more positional arguments. First positional arguments will be the callback.
The remaining positional arguments will be passed as positional arguments to the callback in addition
to client and the frame. Keyword arguments will be passed to the callback except transaction and
timeout.

The method will run the client in the loop, receiving frames from the broker, calling the callback, if
present. The loop() will return once the callback (if any) returns something which evaluates to True or the
connection closes. The loop() will return the last value returned by the callback or None if the loop stopped
due to the disconnection.

1.2. STOMPClient object methods 5

STOMPYMQ

Parameters
¢ timeout (numeric) — read time-out in seconds, or None

e transaction (str) — transaction id to associate ACKs and NACKs sent during the loop,
or None

Returns The value returned by the last call to the callback. If the loop stopped due to discon-
necrtion, returns None

message (destination, body=b", id=None, headers={}, receipt=False, transaction=None, **kv_headers)
Conventience method to send a message. Uses send().

Parameters
¢ destination (str) — destination to send the message to
¢ body (bytes) — message body, default - empty
e id (str or None) - add message-id header, if not None
* headers (dict) — headers to add to the message, default - empty

e receipt (boolean or str) — if True or non-empty string, the frame will include “re-
ceipt” header. If receipt is a str, it will be used as is. If receipt is True, the client will
generate new receipt id. If receipt is False, do not require a receipt.

e transaction (str) — transaction id to associate the frame with, or None
Returns receipt (str) if the receipt was requested (receipt was not False), otherwise None

nack (ack_id, transaction=None)
Send NACK frame

Parameters
e ack_id (str) — NACK id to send
e transaction(str or None) - transaction id to associate the NACK with, default: None

recv (*params, **args)
Receive next frame. If the next frame is RECEIPT, notify those who are waiting for it and keep receiving.
Return None if the connection closed. Raise STOMPError on ERROR.

Parameters transaction (str or None) — transaction to associate the automatically sent
ACK, or None

Returns frame received or None, if the connection was closed
Return type STOMPFrame or None

send (command, headers={}, body=b", transaction=None, receipt=False, **kv_headers)
Send the frame. If a receipt was requested, then the frame sent by the client will incude “receipt” header
and the method will return the receipt-id:

Parameters
e command (str) — frame command
¢ headers (dict) — frame headers, default - {}
* body (bytes) — frame body, default - empty body

e receipt (str or boolean) — if True or non-empty string, the frame will include “re-
ceipt” header. If receipt is a str, it will be used as is. If receipt=True, the client will generate
new receipt id. If receipt=False, do not require a receipt.

6 Chapter 1. STOMP Client

STOMPYMQ

¢ kv_headers - additional headers to add to the frame
Returns receipt (str) if the receipt was requested (receipt was not False), otherwise None

subscribe (dest, ack_mode='auto’, send_acks=True)
Subscribe to messages sent to the specified destination

Parameters
¢ dest (str) — destination
¢ ack_mode (str) — can be either “auto” (default), “client” or “client-individual”

» send_acks (boolean) — whether the client should automatically send ACKs received on
this scubscription

Returns subscription id
Return type str

transaction(txn_id=None)
Creates and begins new transaction

Parameters txn_id (str or None) — transaction ID or None (default), in which case a new
transaction ID will be generated

unsubscribe (sub_id)
Remove subscription

Parameters sub_id (str) — subscription id

1.3 STOMPTransaction object

STOMPClient.transaction() method returns STOMPTransaction object, which has the following methods:

class stompy.client.STOMPTransaction(client, txn_id)
abort (receipt=None)
Aborts the transaction.

Parameters receipt (str or boolean) - if True or non-empty string, the frame will include
“receipt” header. If receipt is a str, it will be used as is. If receipt=True, the client will generate
new receipt id. If receipt=False, do not require a receipt.

Returns receipt (str) if the receipt was requested (receipt was not False), otherwise None

ack(ack_id, transaction=None)
Sends ACK associated with the transaction

Parameters string — ack id

commit (receipt=None)
Commits the transaction.

Parameters receipt (str or boolean) - if True or non-empty string, the frame will include
“receipt” header. If receipt is a str, it will be used as is. If receipt=True, the client will generate
new receipt id. If receipt=False, do not require a receipt.

Returns receipt (str) the receipt was requested (receipt was not False), otherwise None

message (*params, **args)
Sends MESSAGE frame and associates it with the transaction. The method has same arguments as the
STOMPClient.message() method.

1.3. STOMPTransaction object 7

STOMPYMQ

nack (ack_id)
Sends NACK associated with the transaction

Parameters string — ack id

recv (timeout=None)
Receives next frame from the Broker. If the subscription allows sendig ACKs, the ACK will be associated
with the transaction.

send (command, **args)
Sends a STOMP frame to the broker, associating it with the transaction.

Parameters command (str) — frame command

Other arguments are the same as for the STOMPClient.send()

1.4 STOMPFrame object

STOMPFrame object represents a STOMP frame received from the Broker

class stompy.frame.STOMPFrame (command=None, body=b", headers=None, **headers_kv)
Initializes STOMP Frame object

Parameters
e command (str) — frame command
* body (str, bytes)— message body
* headers (dict) — dictionary with frame headers
* headers_kv (keyword) — keyword arguments will be added to the headers

property destination
Convenience accessor for the frame destination

get (name, default=None)
Part of mapping interface to the frame headers:

value = frame.get(“header-name”, default)

property headers
Convenience accessor, returns copy of the frame headers dictionary

property json
Convenience accessor to interpret the frame body as a JSON object

property text
Convenience accessor, converting the frame body to text. Uses the encoding from the content-type header
or UTF-8

8 Chapter 1. STOMP Client

CHAPTER
TWO

MESSAGE BROKER

STOMPYMQ

10 Chapter 2. Message Broker

CHAPTER
THREE

INDICES AND TABLES

* genindex
* modindex

¢ search

11

STOMPYMQ

12 Chapter 3. Indices and tables

Symbols

__init__Q (stompy.STOMPClient method), 5
__iter__Q (stompy.STOMPClient method), 5

A

abort Q) (stompy.client. STOMPTransaction method), 7
ack () (stompy.client. STOMPTransaction method), 7
ack Q) (stompy.STOMPClient method), 5

C

commit () (stompy.client. STOMPTransaction method), 7
connect () (in module stompy), 1
connect () (stompy.STOMPClient method), 5

D

destination (stompy.frame.STOMPFrame property), 8
disconnect () (stompy.STOMPClient method), 5

G

get () (stompy.frame.STOMPFrame method), 8

H

headers (stompy.frame.STOMPFrame property), 8

J

json (stompy.frame.STOMPFrame property), 8

L

loop () (stompy.STOMPClient method), 5

M

message() (stompy.client. STOMPTransaction method),
7
message () (stompy.STOMPClient method), 6

N

nack Q) (stompy.client. STOMPTransaction method), 7
nack () (stompy.STOMPClient method), 6

R

recv() (stompy.client. STOMPTransaction method), 8

INDEX

recv() (stompy.STOMPClient method), 6

S

send () (stompy.client. STOMPTransaction method), 8
send () (stompy.STOMPClient method), 6
STOMPClient (class in stompy), 5

STOMPFrame (class in stompy.frame), 8
STOMPTransaction (class in stompy.client), 7
subscribe () (stompy.STOMPClient method), 7

T

text (stompy.frame.STOMPFrame property), 8
transaction() (stompy.STOMPClient method), 7

U

unsubscribe() (stompy.STOMPClient method), 7

13

	STOMP Client
	Using STOMP Client
	Connecting to the Broker
	connect() function arguments
	Reading messages using iterator
	Reading messages using recv()
	Reading messages using callback
	Waiting for a receipt
	Sending ACKs/NACKs
	Sending messages and other frames
	Sending messages and waiting for receipt
	Transactions

	STOMPClient object methods
	STOMPTransaction object
	STOMPFrame object

	Message Broker
	Indices and tables
	Index

